Outlier Detection Methods for Industrial Applications

نویسندگان

  • Silvia Cateni
  • Valentina Colla
  • Marco Vannucci
چکیده

An outlier is an observation (or measurement) that is different with respect to the other values contained in a given dataset. Outliers can be due to several causes. The measurement can be incorrectly observed, recorded or entered into the process computer, the observed datum can come from a different population with respect to the normal situation and thus is correctly measured but represents a rare event. In literature different definitions of outlier exist: the most commonly referred are reported in the following: “An outlier is an observation that deviates so much from other observations as to arouse suspicions that is was generated by a different mechanism “ (Hawkins, 1980). “An outlier is an observation (or subset of observations) which appear to be inconsistent with the remainder of the dataset” (Barnet & Lewis, 1994). “An outlier is an observation that lies outside the overall pattern of a distribution” (Moore and McCabe, 1999). “Outliers are those data records that do not follow any pattern in an application” (Chen and al., 2002). “An outlier in a set of data is an observation or a point that is considerably dissimilar or inconsistent with the remainder of the data” (Ramasmawy at al., 2000). Many data mining algorithms try to minimize the influence of outliers for instance on a final model to develop, or to eliminate them in the data pre-processing phase. However, a data miner should be careful when automatically detecting and eliminating outliers because, if the data are correct, their elimination can cause the loss of important hidden information (Kantardzic, 2003). Some data mining applications are focused on outlier detection and they are the essential result of a data-analysis (Sane & Ghatol, 2006). The outlier detection techniques find applications in credit card fraud, network robustness analysis, network intrusion detection, financial applications and marketing (Han & Kamber, 2001). A more exhaustive list of applications that exploit outlier detection is provided below (Hodge, 2004): Fraud detection: fraudulent applications for credit cards, state benefits or fraudulent usage of credit cards or mobile phones. Loan application processing: fraudulent applications or potentially problematical customers. Intrusion detection, such as unauthorized access in computer networks. O pe n A cc es s D at ab as e w w w .ite ch on lin e. co m

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simultaneous robust estimation of multi-response surfaces in the presence of outliers

A robust approach should be considered when estimating regression coefficients in multi-response problems. Many models are derived from the least squares method. Because the presence of outlier data is unavoidable in most real cases and because the least squares method is sensitive to these types of points, robust regression approaches appear to be a more reliable and suitable method for addres...

متن کامل

Outlier Detection Using Extreme Learning Machines Based on Quantum Fuzzy C-Means

One of the most important concerns of a data miner is always to have accurate and error-free data. Data that does not contain human errors and whose records are full and contain correct data. In this paper, a new learning model based on an extreme learning machine neural network is proposed for outlier detection. The function of neural networks depends on various parameters such as the structur...

متن کامل

Outlier Detection with Kernel Density Functions

Outlier detection has recently become an important problem in many industrial and financial applications. In this paper, a novel unsupervised algorithm for outlier detection with a solid statistical foundation is proposed. First we modify a nonparametric density estimate with a variable kernel to yield a robust local density estimation. Outliers are then detected by comparing the local density ...

متن کامل

A comparative evaluation of outlier detection algorithms: Experiments and analyses

We survey unsupervised machine learning algorithms in the context of outlier detection. This task challenges state-of-the-art methods from a variety of research fields to applications including fraud detection, intrusion detection, medical diagnoses and data cleaning. The selected methods are benchmarked on publicly available datasets and novel industrial datasets. Each method is then submitted...

متن کامل

Chapter 1 OUTLIER DETECTION

Outlier detection is a primary step in many data-mining applications. We present several methods for outlier detection, while distinguishing between univariate vs. multivariate techniques and parametric vs. nonparametric procedures. In presence of outliers, special attention should be taken to assure the robustness of the used estimators. Outlier detection for data mining is often based on dist...

متن کامل

Outlier Detection in Dynamic Systems with Multiple Operating Points and Application to Improve Industrial Flare Monitoring

In chemical industries, process operations are usually comprised of several discrete operating regions with distributions that drift over time. These complexities complicate outlier detection in the presence of intrinsic process dynamics. In this article, we consider the problem of detecting univariate outliers in dynamic systems with multiple operating points. A novel method combining the time...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012